Sabtu, 25 Februari 2012

Beton Mutu Tinggi

Sekilas Pengetahuan
HIGH STRENGTH CONRETE
Oleh :
Andi Aprizon dan Pramudiyanto
Pendahuluan
High strength concrete merupakan sebuah tipe beton performa tinggi yang secara umum memiliki kuat tekan 6000 psi (40 MPa) atau lebih. Ukuran kuat tekannya diperoleh dari silinder beton 150 mm – 300 mm atau silinder 100 mm – 200 mm pada umur 56 ataupun 90 hari, ataupun umur yang telah ditentukan tergantung pada aplikasi yang diiningkan. Produksi high strength concrete membutuhkan penelitian dan perhatian yang lebih jauh terhadap kontrol kualitasnya daripada beton konvensional
Sejarah Singkat
Sejarah singkat dari perkembangan high strength concrete dapat dijabarkan berikut ini. Pada akhir tahun 1960-an, admixture untuk mengurangi air (superplasticizer) yang terbuat dari garam-garam naphthalene sulfonate diproduksi di Jepang dan melamine sulfonate diproduksi di Jerman. Aplikasi pertama di Jepang yaitu digunakan untuk produk girder dan balok pracetak dan cetak di tempat. Di Jerman, awalnya ditujukan untuk pengembangan campuran beton bawah air yang memiliki kelecakan tinggi tanpa terjadi segregasi. Sejalan dengan kemungkinan tercapainya mutu beton yang tinggi dan workability yang tinggi secara simultan pada campuran beton dengan pemakaian superplasticizer, maka pemakaian kedua bahan tersebut dianggap sangat cocok digunakan pada produksi komponen-komponen struktur cetak di tempat untuk bangunan-bangunan tinggi.
Beton didefinisikan sebagai “high-strength” semata-mata berdasarkan karena kuat tekannya pada umur tertentu. Pada tahun 1970-an, sebelum ditemukannya superplasticizer, campuran beton yang memperlihatkan kuat tekan 40 MPa atau lebih pada umur 28 hari disebut sebagai high strength concrete. Saat ini, saat campuran beton dengan kuat tekan 60 MPa – 120 MPa tersedia di pasaran, pada ACI Committae 2002 tentang High Strength Concrete merevisi definisinya menjadi memperoleh campuran dengan kuat tekan desain spesifikasi 55 MPa atau lebih.
Meskipun tujuan praktisnya adalah untuk menyatakan kuat tekan beton berdasarkan hasil uji pada umur 28 hari, namun terdapat pergeseran untuk menyatakan kekuatan pada umur 56 atau 90 hari dengan alas an bahwa banyak elemen-elemen struktur yang tidak terbebani selama kurun waktu dua atau tiga bulan atau lebih. Saat kekuatan yang tinggi tidaklah diperlukan pada umur-umur awal, akan lebih baik untuk tidak menyatakannya hanya untuk mencapai sejumlah keuntungan misalnya penghematan semen, kemampuan untuk menggunakan bahan-bahan tambah (admixture) secara berlebihan dan produk yang lebih durable.
Beberapa puluh tahun yang silam, bangunan-bangunan tinggi yang ada di New York hampri seluruhnya merupakan bangunan dengan rangka baja. Saat ini, mungkin sepertiga dari bangunan-bangunan tinggi komersial dibuat dengan rangka beton bertulang. Terdapat sebuah penilaian yang diyakini bahwa pemilihan antara rangka baja dengan rangka beton bertulang ditentukan berdasarkan kecepatan konstruksi yang tinggi. Juga, ketersediaan high strength concrete secara komersial memberikan sebuah penilaian ekonomis alternatif untuk membangun kolom dengan beton konvensional pada lantai-lantai bawah dari bangunan-bangunan tinggi. Berdasarkan sebuah laporan, kapasitas kolom-kolom dalam hal kemampuan menahan beban pada bangunan-bangunan berlantai banyak meningkat 4,7 kali untuk setiap lipat tiga kenaikan harga. Untuk konstruksi bangunan-bangunan yang menggunakan rangka beton bertulang, 30 lantai atau lebih, kolom-kolom dengan ukuran normal dapat dibuat pada sepertiga bagian dari bangunan dengan mutu beton konvensional 30 MPa sampai dengan 35 MPa. Namun pemakaian high strength concrete dibenarkan untuk kolom-kolom langsing pada duapertiga bagian bawah dari bangunan.
Mengapa kita membutuhkan high strength concrete? Beberapa alasan yang dapat diberikan di sini antara lain:
Untuk menempatkan beton pada masa layannya pada umur yang lebih awal, sebagai contoh pada perkerasan di umur 3 hari.
Untuk membangun bangunan-bangunan tinggi dengan mereduksi ukuran kolom dan meningkatkan luasan ruang yang tersedia.
Untuk membangun sruktur bagian atas dari jembatan-jembatan bentang panjang dan untuk mengembangkan durabilitas lantai-lantai jembatan.
Untuk memenuhi kebutuhan-kebutuhan khusus dari aplikasi-aplikasi tertentu seperti durabilitas, modulus elastisitas dan kekuatan lentur. Beberapa dari aplikasi ini termasuk dam, atap-atap tribun, pondasi-pondasi pelabuhan, garasi-garasi parkir, dan lantai-lantai heavy duty pada area industri.
Material
Bahan-bahan yang dibutuhkan dalam campuran high strength conrete antara lain:
Semen
Semen Portland (PC) umum pada berbagai tipe (yang memenuhi spesifikasi standar ASTM C 150) dapat digunakan untuk memperoleh campuran beton dengan kekuatan tekan sampai dengan 50 Mpa. Untuk mendapatkan kuat tekan yang lebih tinggi saat mempertahankan workability yang baik, sangat perlu untuk menggunakan admixture yang dikombinasikan dengan semen. Pada kasus tersebut, kompabilitas semen-admixture menjadi sebuah hal yang penting.
Pengalaman telah memperlihatkan bahwa, dengan penggunaan tipe superplasticizer naphthalene sulfonate atau melamine sulfonate, semen portland dengan kadar C3A dan alkali yang rendah umumnya menghasilkan campuran beton yang memperlihatkan hilangnya slump tinggi sejalan dengan waktu. Situasi ini telah berubah karena telah dilaporkan bahwa polyacrylate copolymer, sebuah generasi baru superplasticizer, tidak menyebabkan kehilangan slum yang berlebihan pada kebanyakan jenis semen portland maupun semen portland campuran.
Agregat
Pada beton normal, tipe dan jumlah agregat memainkan peranan yang penting dalam stabilitas isi beton, namun hal tersebut memiliki efek yang terbatas pada kekuatan. Pada high strength conrete, agregat masih memainkan peranan yang penting dalam stabilitas isi, namun juga memainkan peranan yang penting dalam kekuatan dan kekakuan beton. Rasio faktor air semen yang digunakan pada campuran high strength conrete menyebabkan pemadatan pada daerah matrik dan daerah transisi antarmuka. Lebih lajut, beberapa tipe agregat seperti granit dan kwarsit dapat menyebabkan retak-retak mikro pada daerah transisi karena perbedaan susut suhu dan menghalangi pengembangan kekuatan mekanis tinggi. Sehingga, perhatian yang layak harus diambil pada pemilihan agregat-agregat untuk high strength concrete. Berdasarkan hasil-hasil dari studi eksperimental, Aitcin dan Mehta merekomendasikan bahwa tipe agregat yang keras dan kuat dengan modulus elastisitas tinggi dan koefisien ekspansi panas yang kecil lebih baik digunakan untuk memproduksi campuran very high strength concrete.
Dengan sebuah rasio faktor air semen yang telah ditentukan, kekuatan dari campuran beton dapat dinaikkan secara signifikan dengan secara sederhana mengurangi ukuran maksimum agregat kasar. Hal ini memiliki efek yang menguntungkan pada kekuatan daerah transisi antar muka. Menurut Aitcin, semakin tinggi kekuatan yang ingin dicapai, maka semakin kecil ukuran agregat kasarnya. Nilai kuat tekan sampai dengan 70 MPa dapat diproduksi dengan agregat kasar kualitas bagus dengan ukuran maksimum 20 mm – 25 mm. untuk menghasilkan nilai kuat tekan 100 MPa, maka ukuran maksimum agregat kasar yang harus digunakan adalah 14 mm – 20 mm. Beton-beton komersial dengan nilai kuat tekan lebih dari 125 MPa telah diproduksi menggunakan ukuran agregat maksimum 10 mm – 14 mm.
Memandang agregat halus, setiap bahan dengan ukuran distribusi partikelnya memenuhi spesifikasi standar ASTM C 38 layak digunakan untuk campuran high strength concrete. Aitcin merekomendasikan penggunaan agregat halus dengan modulus kehalusan yang tinggi (kira-kira 3,0) untuk beberapa alasan berikut ini :
Campuran high strength concrete sudah memiliki partikel-partikel kecil semen dan pozzolan dalam jumlah yang bayak, dengan demikian kehadiran partikel yang sangat kecil pada agregat yang halus tidak diperlukan untuk mengembangkan workability.
Penggunaan agregat yang lebih kasar akan memerlukan air yang lebih sedikit untuk memperoleh workability yang sama, dan
Selama proses pencampuran, partikel-partikel yang lebih ksar akan menghasilkan tegangan geseran yang lebih besar yang membantu untuk menghindari penggumpalan partikel-partikel semen.
Admixture
Kebutuhan kekuatan yang tinggi dan ukuran agregat yang kecil berarti bahwa isi dari bahan-bahan pengikat pada campuran beton akan menjadi tinggi, umumnya di atas 400 kg/m3. Isi bahan-bahan pengikat sebesar 600 kg/m3 dan bahkan lebih tinggi telah diselidiki namun tidak diinginkan dengan alasan tingginya biaya dan susut suhu dan pengeringan yang berlebihan. Lebih jauh, dengan naiknya proporsi semen dalam beton, memang kekuatan yang tinggi tercapai, namun dengan susah kekuatan yang tinggi dicapai di atas sejumlah semen yang tertentu. Sebagaimana dijelaskan di atas, hal ini mungkin disebabkan karena ketidak-homogenitas-an yang sudah menjadi sifat pasta semen portland yang telah terhidrasi yang berisi luasan-luasan kristal kalsium hidroksida yang terdistribusi secara cak dalam fase utama. Luasan-luasan ini menyatakan daerah-daerah yang lemah yang rentan terhadap retak mikro karena tegangan tarik.
Metode Desain Campuran High Strength Concrete
Metode yang digunakan dalam merencanakan campuran high strength concrete ada beberapa cara, antara lain: (1) Minimum Voids Method, (2) Maximum Density Method, (3) Fineness Modulus Method, (4) British Mix Design (DOE) Method, (5) American Concrete Institute Method (ACI Method), dan (6) Indian Standard Method. Namun secara umum, desain campuran beton yang optimum dihasilkan dari pemilihan bahan-bahan local yang tersedia yang menyebabkan beton segar mampu untuk ditempatkan dan mampu untuk diselesaikan dan dapat memastikan pengembangan kekuatan dan sifat-sifat lain yang diinginkan dari beton yang telah mengeras sebagaimana dinyatakan oleh desainer. Beberapa konsep dasar yang perlu untuk dipahami untuk high strength concrete antara lain:
Agregat semestinya kuat dan durable. Agregat tidak perlu keras dan kekuatannya tinggi namun perlu kompatibel, dalam arti cukup kaku dan kuat, dengan pasta semen. Umumnya ukuran maksimum agregat kasar yang lebih kecil digunakan untuk kuat tekan beton yang lebih tinggi. Agregat halus yang digunakan bisa jadi lebih kasar daripada yang diperbolehkan oleh ASTM C 33 (modulus kehalusan butir lebih besar dari 3,2) karena tingginya agregat halus telah digantikan oleh bahan-bahan perekat (semen).
Campuran high strength concrete akan memiliki isi bahan-bahan perekat yang tinggi yang meningkatkan panas hidrasi dan kemungkinan susut yang tinggi mengawali potensi retak. Kebanyakan campuran berisi satu atau lebih bahan-bahan perekat tambahan seperti fly ash (tipe C atau F), ground granulated blast furnace slag, silica fume, metakaolin atau bahan-bahan pozolanik alami.
Campuran high strength concrete umumnya membutuhkan rasio factor air semen yang rendah, dimana rasio factor air semen berada pada rentangan 0,23 sampai dengan 0,35. Faktor air semen yang rendah ini hanya dapat dicapai dengan admixture (superplasticizer) dalam jumlah dan dosis yang besar, menyesuaikan antara tipe F atau G berdasarkan ASTM C 494. Admixture pengurang air tipe A juga dapat digunakan sebagai kombinasinya.
Isi total dari bahan-bahan perekat umumnya sekitar 700 lb/yd3 (415 kg/m3) namun tidak boleh lebih dari 1100 lb/yd3 (650 kg/m3).
Pemakaian air entrainment pada high strength concrete akan menurunkan potensial kekuatan secara besar.
Perhatian yang lebih dan evaluasi akan diperlukan bila spesifikasi pekerjaan mengatur batas-batas sifat beton seperti rangkak, susut dan modulus elastisitas. Ahli teknik mungkin mengatur batas-batas sifat tersebut untuk desain strukturnya. Penelitian-penelitian saat ini mungkin tidak memberikan panduan yang diperlukan tentang hubungan empiris dari sifat-sifat tersebut dari pengujian-pengujian trandisional dan beberapa dari pengujian tersebut sangat khusus dan mahal untuk dilakukan bagi evaluasi campuran. Berdasarkan pertimbangan-pertimbangan teoretis, rangkak dan susut yang lebih kecil, modulus elastisitas yang lebih tinggi dapat dicapai dengan agregat yang lebih besar dan isi pasta yang lebih sedikit pada beton. Menggunakan ukuran agregat terbesar yang dapat dicapai dan agregat halus yang digradasi medium sampai dengan kasar dapat mencapai hal tersebut. Ukuran agregat yang lebih kecil misalkan 3/8 inci ( 9,5 mm) dapat digunakan untuk menghasilkan kuat tekan yang sangat tinggi namun membutuhkan sifat-sifat seperti rangkak, susut dan modulus elastisitas untuk dikorbankan. Apabila kesulitan ditemui dalam mencapai kuat tekan yang tinggi, hanya dengan menambahkan bahan-bahan perekat tidak akan menaikkan kekuatan. Faktor-faktor seperti bahan-bahan pengganggu dalam agregat, pelapis-pelapis agregat, agregat kasar, muka-muka pecah, tampang dan tekstur, dan batasan-batasan pengujian bisa jadi menghalangi kuat tekan tinggi dapat tercapai. Proporsi campuran beton akhir ditentukan dengan batch coba-coba, entah itu di laboratorium ataupun dengan batch-batch produksi lapangan skala kecil. Produksi, transportasi, penempatan dan finishing high strength concrete bisa jadi berbeda secara signifikan dari prosedur-prosedur yang digunakan pada beton konvensional. Untuk proyek-proyek yang kritis, sangat direkomendasikan penuangan coba-coba dan evaluasi dilakukan dan dimasukan sebagai item yang harus dibayarkan pada kontrak. Pertemuan pra-penawaran dan pra-konstruksi sangatlah penting untuk dilakukan untuk memastikan kesuksesan proyek yang menggunakan high strength concrete. Selama konstruksi, pengukuran ekstra harus dilakukan untuk melindungi terhadap susut plastik dan retak panas pada bagian-bagian yang lebih tipis. High strength concrete mungkin membutuhkan waktu yang lebih lama sebelum perancah dibongkar.
Silinder-silinder uji high strength concrete sebaiknya dicetak dengan hati-hati, dirawat, ditutupi dan diuji. Waktu setting high strength concrete yang lebih lambat mungkin juga terjadi.
Contoh Mix Design – High Strength Concrete.
Mix design high strength concrete dengan kuat tekan karakteristik rencana pada umur 28 hari 60 MPa. Untuk contoh desain yang lain, dapat dilihat di sini
(a) DESIGN STIPULATION:-
Target strength = 60Mpa
Max size of aggregate used = 12.5 mm
Specific gravity of cement = 3.15
Specific gravity of fine aggregate (F.A) = 2.6
Specific gravity of Coarse aggregate (C.A) = 2.64
Dry Rodded Bulk Density of fine aggregate = 1726 Kg/m3
Dry Rodded Bulk Density of coarse aggregate = 1638 Kg/m3

Step-1
Calculation for weight of Coarse Aggregate:
From ACI 211.4R Table 4.3.3 Fractional volume of oven dry Rodded C.A for 12.5mm size aggregate is 0.68m3
Weight of C.A = 0.68*1638 = 1108.13 Kg/m3

Step-2
Calculation for Quantity of Water:
From ACI 211.4R Table 4.3.4
Assuming Slump as 50 to 75mm and for C.A size 12.5 mm the Mixing water = 148 ml
Void content of FA for this mixing water = 35%
Void content of FA (V)
V = {1-(Dry Rodded unit wt / specific gravity of FA*1000)}*100
= [1-(1726/2.6*1000)]*100
= 34.62%

Adjustment in mixing water = (V-35)* 4.55
= (34.62 – 35)*4.55
= -1.725 ml
Total water required = 148 + (-1.725) = 146.28 ml
Step-3
Calculation for weight of cement
From ACI 211.4R Table 4.3.5(b)
Take W / C ratio = 0.29
Weight of cement = 146.28 / 0.29 = 504.21 kg/m3

Step-4
Calculation for weight of Fine Aggregate:

Cement = 504.21 / 3.15*1000= 0.1616
Water = 146.28 / 1*1000= 0.1462
CA = 1108.13 / 3*1000= 0.3690
Entrapped Air = 2 / 100= 0.020
Total = 0.7376m3
Volume of Fine Aggregate= 1-0.7376
Weight of Fine Aggregate= 0.2624*2.6*1000= 683.24 kg/m3

Step-5
Super plasticizer:
For 0.8% = (0.8 / 100)*583.53 = 4.668 ml

Step-6
Correction for water:
Weight of water (For 0.8%) =146.28 – 4.668 =141.61 kg/m3

Requirement of materials per Cubic meter
Cement = 504.21 Kg/m3
Fine Aggregate = 683.24 Kg/m3
Coarse Aggregate = 1108.13 Kg/m3
Water = 141.61 Kg/ m3
Super plasticizers = 4.6681 / m3

So the final ratio becomes
Cement : Fine agg (kg/m3) : Coarse agg (kg/m3) : Water (l/m3): Superplasticizer (l/m3)

1: 1.35 :2.19 :0.29 :0.8

Daftar Pustaka
Anonim, ( )., CIP 33 – High Strength Concrete, National Ready Mixed Concrete Association., -
Kosmatka, Steven H., Kerkhoff, Beatrix, dan Panarese, William C., 2003., Design and Control of Concrete Mixture.,Portland Cement Association, Illionis.
Mehtar, P. Kumar, dan Monteiro, Paulo J.M., 2006., Concrete – Microstructure, Properties and Materials, 3rd edition., McGraw-Hill, New York.
Civil Engineering Portal, http://www.engineeringcivil.com/, portal khusus untuk teknik sipil

Sumber : http://pramudiyanto.wordpress.com/2008/08/06/beton-mutu-tinggi/

Kamis, 23 Februari 2012

SEAL COAT (Lapisan Pelindung)

Seal Coat (lapisan pelindung) adalah campuran dari aspal emulsi, air, pengisi mineral, dan campuran lainnya. lapisan pelindung diterapkan langsung ke permukaan dari perkerasan aspal. Hal ini dapat diterapkan oleh karet squeegee, sapu, atau semprot mekanis.

lapisan pelindung melayani untuk menutup bagian atas aspal, mencegah air dari menembus permukaan trotoar dan melindungi lapisan atas aspal dari oksidasi dan keausan yang disebabkan oleh paparan sinar matahari dan udara. Mantel Seal juga mempercantik trotoar dengan menyediakan, halus hitam, bahkan permukaan ideal untuk melukis garis dan menyapu.

lapisan pelindung dirancang untuk digunakan jalan raya dari mana ada kecepatan lalu lintas rendah dan radiuses balik ketat seperti tempat parkir, taman rumah mobil, sekolah, bahu, dll mantel Seal berbeda segel bubur yang menggunakan filler lebih kasar agregat dan dirancang untuk digunakan pada daerah kecepatan tinggi dengan lalu lintas bergulir lurus.

Apa Penyebab Perkerasan Aspal untuk Gagal?

Dengan asumsi bahwa perkerasan aspal awal dirancang dan dibangun dengan benar, penyebab utama kegagalan adalah penetrasi air ke dasar aspal.

Proses ini dimulai dengan oksidasi dari permukaan perkerasan yang menyebabkan aspal kering dan menjadi rapuh, ini menyebabkan erosi lapisan atas partikel halus dan munculnya batu yang lebih besar dan retak kecil di permukaan.

Jika tidak diobati retakan ini tumbuh dari waktu ke waktu dan akhirnya memungkinkan air untuk menembus ke dasar trotoar. Ketika air masuk dasar trotoar bergerak basis material dan mengendap menyebabkan retak lebih lanjut dan "penampilan buaya."

Ketika trotoar mencapai tahap ini satu-satunya pilihan adalah pengangkatan dan penggantian aspal lama.

Bagaimana Coating Seal membantu?

lapisan pelindung melapisi jalan aspal, mencegah oksidasi dan erosi lapisan atas aspal. Pada lapisan perkerasan yang lebih tua segel menggantikan partikel halus hilang dari permukaan aspal akibat oksidasi. Seal segel mantel celah-celah kecil yang bisa berubah menjadi retak besar dan mencegah air merembes ke bahan dasar.

lapisan pelindung membantu melindungi aspal dari matahari serta efek berbahaya dari tumpahan bahan kimia seperti minyak dan bensin. Seal lapisan menyediakan permukaan hitam menarik yang sangat ideal untuk melukis garis dan tanda lainnya. Hal ini juga meninggalkan ideal, permukaan halus bersih untuk menyapu, menurunkan biaya pembersihan. Mantel Seal biaya sen per kaki persegi dibandingkan dengan dolar yang dibutuhkan untuk memperbaiki atau mengganti aspal yang rusak.

Ketika Haruskah Seal Coating Dilakukan?

Umumnya Anda harus menunggu beberapa bulan sebelum menyegel trotoar baru untuk memungkinkan waktu untuk menyembuhkan. CSI merekomendasikan menunggu 6-12 bulan sebelum segel perkerasan lapisan baru.

Setelah permukaan telah disegel itu harus disegel kembali setiap 3 - 4 tahun atau sesuai kebutuhan.

Senin, 20 Februari 2012

SEMEN TERBUAT DARI SAMPAH

Jepang, sebuah negeri penuh inovasi. Mungkin sebutan itu sesuai dengan bagaimana jepang menangani masalah sampah. Setelah berhasil membuat sebuah airport berkelas internasional di Kobe dimana yang dibuat diatas lapisan sampah, menerapkan pembuatan pupuk dari sampah di berbagai hotel di Jepang, kini Jepang telah berhasil mengubah sampah menjadi produk semen yang kemudian dinamakan dengan ekosemen.
Ekosemen

Ekosemen diambil dari kata “Ekologi” dan “Semen”. Diawali penelitian di tahun 1992, para peneliti Jepang telah meneliti kemungkinan abu hasil pembakaran sampah, endapan air kotor dijadikan sebagai bahan semen. Dari hasil penelitian tersebut diketahui bahwa abu hasil pembakaran sampah mengandung unsur yg sama dg bahan dasar semen pada umumnya.

Pada tahun 1993, Proyek itu kemudian dibiayai oleh Kementrian Perdangan Internasional dan Industri Jepang. Pada tahun 2001, pabrik pertama di dunia yang mengubah sampah menjadi semen resmi beroperasi di Chiba. Pabrik tersebut mampu menghasilkan ekosemen 110,000 ton/tahunnya. Sedangkan sampah yang diubah menjadi abu yang kemudian diolah menjadi semen mencapai 62,000 ton/tahun, endapan air kotor dan residu abu industri yang diolah mencapai 28,000 ton/tahun.

Penggunaan Abu Insinerasi untuk semen

Penduduk jepang membuang sampah baik organik maupun anorganik, sekitar 50 juta ton/tahun. Dari 50 ton/tahun tersebut yang dibakar (Proses Incineration) menjadi abu (incineration ash) sekitar 37 ton/tahun. Sedangkan abu yang dihasilkan mencapai 6 ton/tahunnya. Dari abu inilah yang kemudian dijadikan sebagai bahan dari pembuatan ekosemen. Abu ini dan endapan air kotor mengandung senyawa2 dalam pembentukan semen biasa. Yaitu, senyawa2 oksida seperti CaO, SiO2, Al2O3, dan Fe2O3. Oleh karena itu, abu insinerasi ini bisa berfungsi sebagai pengganti tanah liat yang digunakan pada pembuatan semen biasa[1]

Table 1. Komposisi senyawa pada ekosemen dan semen biasa (ppm)

Sedangkan kandungan CaO yang masih kurang pada abu insinerasi dapat dicukupi dengan penambahan batu kapur. Penggantian sebagian batu kapur (kandungan utamanya CaCO2) dengan abu insenarasi (kandungan utama CaO) dapat mengurangi emisi CO2 yang selama ini menjadi dilemma dalam industri semen. Dalam pembuatan ekosemen ini, chlorine dan logam berat yang terkandung pada abu insinerasi akan diekstrak menjadi artificial ore (Cu, Pb, dll) yang kemudian direcyle untuk digunakan kembali.
Proses Pembuatan Ekosemen

Secara umum, produksi semen biasa (Portland) meliputi pengeringan, penghancuran dan pencampuran batu kapur, tanah liat, quartzite dan bahan baku lainnya dan kemudian dibakar pada rotary klin. Pada pembuatan ekosemen, secara prinsip sama dengan pembuatan semen biasa. Perbedaannya terletak pada proses pembakaran dan pengolahan limbah.

Persiapan

Bahan baku (abu insenerasi, endapan air kotor rumah tangga, residu abu industri) diproses terlebih dahulu, seperti pengeringan, penghancuran, dan pemisahan logam yang masih terkandung pada bahan baku.

Pengeringan dan Penghancuran

setelah dikeringkan, bahan baku tersebut kemudian dihancurkan pada Raw grinding/drying mills bersamaan dengan batu kapur .

Pencampuran

Setelah dikeringkan dan dihancurkan,k emudian dimasukkan ke dalam Homogenizing Tank bersamaan dg fly ash (abu yang dihasilkan oleh pembangkit listrik tenaga batu bara) dan blast furnace slag (Limbah yang dihasilkan industri besi). Dua Homoginezing tank ini dimaksudkan untuk mencampuran semua secara merata. Sehingga bisa menghasilkan komposisi yang diinginkan

Pembakaran

Berbeda dengan produksi semen biasa dimana dibakar pada suhu 900℃, pada proses pembuatan ekosemen bahan baku dimasukkan ke dalam rotary klin dan dibakar pada suhu diatas 1350℃. Pada proses ini, dioksin dan senyawa berbahaya lainnya yang terkandung pada abu insenerasi akan diurai menjadi air, gas klor sehingga aman bagi lingkungan. Gas yang keluar dari rotary klin kemudian didinginkan secara cepat hingga suhu 200℃ untuk mencegah terbentuknya dioksin kembali. Pada proses ini pula logam berat yg masih terkandung dipisahkan dan dikumpulkan ke dalam bag filter sebagai debu yang masih mengandung klor. Debu ini kemudian dialirkan ke Heavy Metal Recovery Process. Pada proses ini,klor yang masih terkandung akan dihilangkan dan menghasilkan sebuah articial ore seperti tembaga dan timbal yang kemurniannya mencapai 35 % atau lebih.

Pada proses pembakaran ini akan dihasilkan clinker (intermediate stage pada industri semen) yang kemudian dikirim ke clinker tank.

Penghancuran Produk

gypsum kemudian ditambahkan bersama clinker dan campuran tersebut dihancurkan pada finish mills yang kemudian akan menghasilkan produk ekosemen.
Kendala

Salah satu kendala utama pada pengembangan ekosemen ini adalah proses produksinya yang masih mahal bila dibandingkan dengan produksi semen biasa. Hal ini dikarenakan proses pemisahan klor pada ekosemen yang memakan banyak proses sehingga membuat biaya produksi lebih mahal. Klor ini sendiri diakibatkan plastik vinil yang ikut tercampur pada sampah organik. Sehingga pada pembuatan abu insenarasi, palstik vinil ikut terurai menjadi klor. Klor ini sendiri sangat berpengaruh pada penurunan kekuatan konkrit ekosemen bila tidak dipisahkan.

Sehingga pemisahan plastik dari sampah organic secara seksama menjadi kunci utama pada produksi ekosemen ini.
Kualitas Ekosemen

Hingga saat ini ada dua macam tipe ekosemen (berdasarkan penambahan alkali dan kandungan klor) yaitu tipe biasa dan Tipe Rapid Hardening. Ekosemen tipe biasa mempunyai kualitas sama baiknya dengan semen portland biasa. Tipe ekosemen ini digunakan sebagai ready mixed concrete. Sedangkan ekosemen tipe Fast Hardening memiliki kekuatan konkrit dan pengerasan yang lebih cepat dibanding semen portland tipe high-early strenght (lihat Fig.2). Ekosemen tipe ini digunakan pada blok arsitektur, bahan genteng, pemecah ombak, dll. Ekosemen ini telah melewati proses JIS (Japanese Indusrial Standard).

grafik

Fig.2 perbandingan kekuaran ekosemen dan semen Portland [2]
Manfaat Ekosemen

Dengan adanya pengubahan sampah menjadi semen, menambah alternatif pengolahan sampah yang lebih bernilai ekonomis, dan biaya pengolahan sampah di Jepang menjadi lebih murah. Bila sebelumnya 40,000 yen/ton (pengolahan sampah konvensional) menjadi 39,000 yen/ton (pengolahan sampah hingga menjadi semen).

Selain itu, teknologi ekosemen sangatlah ramah akan lingkungan. Pada pembuatan ekosemen, sebagian CaO diperoleh dari abu insenerasi sehingga mengurangi penggunaan batu kapur (CaCO2), yang selama ini sumber polusi gas CO2. Tak salah, jika kemudian teknologi ekosemen mendapat penghargaan dari menteri lingkungan Jepang atas peranannya mencegah pemanasan global.
Peluang di Indonesia

Indonesia belum bisa lepas dari masalah sampah. Mulai dari penolakan warga masyarakat sekitar TPA akibat kepulan asap dan bau yang ditimbulan pengolahan sampah saat ini hingga kejadian yang tidak pernah dilupakan, tragedi leuwih gajah yang merenggut 24 nyawa tak bersalah.

Sudah banyak upaya yang dilakukan, termasuk dengan mengubahnya menjadi sumber energi (metan) namun akibat kurangnya prospek dari segi ekonomi, akhirnya perkembangannya masih jalan ditempat. Dengan berhasilnya Jepang, mengolah sampah menjadi semen, tentu menjadi peluang sangat besar untuk dikembangkan di Indonesia. Di Jakarta saja sampah yang dihasilkan oleh warganya mencapai 6000 ton lebih/hari. Selain itu secara prinsip, pembuatan ekosemen hampir sama dengan pembuatan semen biasa, sehingga jika bisa dilakukan kerja sama dengan pihak industri semen, maka akan jadi kerjasama yang menguntungkan baik pihak pemerintah maupun pihak industri. Dari pihak pemerintah penanganan sampah bisa teratasi dan dari pihak industri mampu mengurangi penggunaan limestone (26 %).

Namun yang terpenting adalah kemauan pemerintah, khususnya pemerintah kota/daerah, untuk mengelola sampah dengan baik dan memulai untuk mencoba memisahkan sampah antara sampah organik, anorganik, botol dan kaleng menjadi kebudayaan bangsa Indonesia secara luas. Sehingga peluang pemanfaatan sampah menjadi semen atau produk yang lain bisa oleh pihak industri bisa lebih ekonomis.

Sumber:

T. Shimoda, S. Yokoyama, Ecocement—a new Portland cement to solve municipal and industrial waste problems, Proc. of International Congress on Creating with Concrete, Dundee, 1999, pp. 17– 30.
www.taiheiyo-cement.co.jp
www.ichiharaeco.co.jp

Artikel ini pernah dimuat di beritaiptek.com

CARA MENETUKAN MUTU BETON

Pada tahun 1950-an, beton dikategorikan mempunyai mutu tinggi jika kekuatan tekannya 30 MPa. Tahun 1960- 1970an, kriterianya naik menjadi 40 MPa.Saat ini beton dikatakan sebagai beton mutu tinggi jika kekuatan tekannya diatas 50 MPa dan diatas 80 MPa adalah beton mutu sangat tinggi ( Suparno, 1998). Banyak parameter ang mempengaruhi kekuatan tekan beton, diantaranya adalah kualitas bahan – bahan penyusunnya, rasio air – semen yang rendah dan kepadatan yang tinggi pula. Beton segar yang dihasilkan dengan memperhatikan parameter tersebut biasanya sangat kaku, sehingga sulit dibentuk atau dikerjakan terutama pada pengerjaan pemadatan. Dengan semakin banyaknya pabrikan yang menghasilkan bahan admixture sebagai bahan pengencer dari beton yang berefek mencairkan beton tanpa menambah campuran air dalam beton, maka hal ini tidak menjadi masalah ( M.S. Besari, 2003).

Beberapa faktor yang harus dipertimbangkan dalam menghasilkan sebuah beton yang bermutu tinggi, yaitu :

Faktor Air Semen

Semakin besar nilai FAS, semakin rendah mutu kekuatan beton. Dengan demikian, untuk menghasilkan sebuah beton yang bermutu tinggi FAS dalam beton haruslah rendah. Umumnya nilai FAS minimum untuk beton normal sekitar 0.4 dan nilai maksimum 0.65. Tujuan pengurangan FAS ini adalah untuk mengurangi hingga seminimal mungkin porositas beton yang dibuat sehingga akan dihasilkan beton mutu tinggi. Pada beton mutu tinggi atau sangat tinggi, FAS dapat diartikan sebagai water to cementious, yaitu berat air terhadap berat total semen dan aditif cementiuos yang ditambahkanoada campuran beton mutu tinggi ( Supartono, 1998).

Kualitas Agregat Halus ( Pasir)
Bentuk agregat halus akan mempengaruhi kualitas mutu beton yang dibuat. Agregat berbentuk bulat mempunyai rongga udara minimum 33% lebih kecil dari rongga udara yang dipunyai oleh agregat berbentuk, beton yang dihasilkan akan mempunyai rongga udara yang lebih sedikit. Tekstur permukaamn agregat halus yang bertekstur halus akan lebih sedikit membutuhkan air dibandingkan dengan agregat dengan permukaan kasar. Dengan semakin sedikitnya air yang dibutuhkan kemungkinan menghasilkan beton yang bermutu tinggi lebih besar menggunakan agergat kasar.
Modulus halus butir ( finnes modulus) atau yang biasa disingkat MHB ialah sesuatu indeks yang dipakai untuk mengukur kehalusan atau kekasaran bitur – butir agergat. MHB didefinisikan sebagai jumlah persen kumulatif dari butir agregat yang tertinggal ( retained) diatas satu set ayakan ( 38.9, 9.6, 4.8, 2.4, 1.2, 0.6, 0.3, dan 0.15 MM), kemudian nilai tersebut dibagi 100 ( Abrams, 1918 ). Semakin besar nilai MHB suatu agregat, semakin besar butiran agregat. Umumnya agregat halus mempunyai MHB sekitar 1.50 – 3.8. Hasil penelitian menunjukan bahwa nilai MHB 1,5 < MHB < 3,0. Umumnya menghasilkan beton mutu tinggi dengan FAS yang rendah dan mempunyai kekuatan tekan dan kebecekan yang optimal ( Larrard, 1990 ).
Gradasi yang baik dan teratur ( contionus) dari agregat halus besar kemungkinan akan menghasilkan beton yang mempunyai kekuatan tinggi dibandingkan dengan agregat yang bergradasi gap atau seragam. Gradasi yang baik adalah gradasi yang memenuhi syarat zona tertentu dan agregat halus tidak boleh mengandung bagian yang lolos pada satu set ayakan lebih besar dari 45% dan tertanam pada ayakan berikutnya.
Kebersihan agregat juga akan sangat mempengaruhi dari mutu beton yang akan dibuat terutama dari zat – zat yang dapat merusak baik pada saat beton muda maupun beton yang sudah mengeras.

Kualitas Agregat Kasar
Kekuatan agregat bervariasi dalam batas yang besar. Butir – butir agregat dapat bersifat kurang kuat karena dua hal. Pertama, karena terdiri dari partikel yang kuat tetapi tidak baik dalam hal pengikatan ( interlocking ). Kedua, porositas yang besar akan mempengaruhi keuletan atau ketahanan terhadap beban kejut. Dalam pemilihan agregat kasar, porosiyas yang rendah merupakan faktor yang sangat menentukan untuk menghasilkan suatu adukan beton yang seragam, dakam artian mempunyai keteraturan dan keseragaman yang baik pada mutu maupun parameter yang lain dibutuhkan. Akan sangat baik jika akan digunakan membentuk beton mutu tinggi daya serap air sebesar tidak lebih dari 1%. Karena hal ini akan sangat berhubungan dengan pengendalian kandungan air pada campuran beton, yang dapat mengakibatkan ketidakteraturan atau deviasi yang sangat besar pada mutu yang akan dihasilkan.
Bentuk fisik dari agregat kasar yang bersudut titik agregat ini mempunyai Sudut – Sudut yang tampak jelas yang terbentuk di tempat – tempat perpotongan bidang –bidang dengan permukaan kasar. Rongga udara pada agregat ini bewrkisar antara 38% – 40%, dengan demikian membutuhkan lebih banyak lagi pasta semen agar mudah dikerjakan untuk mengurangi rongga ini dikombinasikan dengan butiran agregat halus yang berbentuk bulat. Beton yang dihasilkan dengan menggunakan agregat ini cocok untuk struktur yang menekankan pada kekuatan atau untuk beton mutu tinggi karena ikatan antara agregat baik yang kuat.
Ukuran butir maksimum agregat juga akan mempengaruhi mutu beton ysng akan dibuat. Hasil penelitian Larrard (1990) menebutkan bahwa butiran maksimum yang memberikan bukti nyata untu membuat beton mutu tinggi tidak boleh lebih dari 15mm.
Namun demikian pemakaian butiran agregat sampai dengan 25mm masih memungkinkan diperolehnya beton mutu tinggi dalam proses produksinya.
Gradasi yang baik dan teratur(continous)dari agregat kasar besar kemungkinan akan menghasilkan beton yang mempunyai kekuatan tinggi dibandingkan dengan agregat yang bergradasi gap atau seragam. Gradasi yang baik adalah gradasi yang memenuhi syarat zona tertentu dan agregat halus tidak boleh mengandung bagian yang lolos pada satu set ayakan lebih besar dari 45% dan tertahan pada ayakan berikutnya. Kebersihan agregat juga akan sangat mempengaruhi daru mutu beton yang akan dibuat terutama dari zat-zat yang dapat merusak baik pada saat beton muda maupun beton sudah mengeras.

4. Bahan Tambah
Bahan tambah yang digunakan dalam beton dapat dibedakan menjadi dua yaitu :
Bahan tambah yang bersifat kimiawi ( chemical admixture )
Bahan tambah admixture ditambahkan saat pengadukan dan atau saat
pelaksanaan pengecoran ( plecing )
2. Bahan tambah yang bersifat mineral ( additive)
Bahan tambah additive ditambahkan saat pengadukan dilaksanakan. Bahan tambah tambah additive merupakan bahan tambah yang lebih banyak digunakan untuk penyemenan jadi bahan tambah additive lebih banyak digunakan untuk perbaikan kinerja kekuatannya.
Bahan tambah kimia yang banyak yang digunakan untuk memperbaiki kinerja beton mutu tinggi umumnya yang bersifat yang memperbaiki kelecakan. Bahan tambah ini dikelompokkan kedalam high range water reducing admixtures.Water reducing admixture adalah bahan tambah yang mengurangi air pecampur yang diperlukan untuk dihasilkan beton dengan konsistensi tertentu. Water – Reducing admixture digunakan antara lain untuk dengan tidak mengurangi kadar semen dengan nilai slump untuk memproduksi beton dengan nilai perbandingan atau faktor air semen ( WCR ) yang rendah. Penggunaan bahan tanbah mineral ( additive) untuk membentuk neton mutu tinggi pada saat ini sudah merupakan bagian yang mutlak. Bahan tambah digunakan dan populer adalah abu terbang yang merupakan hasil residu pebangkit tenaga listrik tenaga uap yang menggunakan batu bara jenis antrasit atau bitumen. Karena sifatnya yang mengandung pozollan maka bahan ini sangat baik jika digunakan untuk membentuk beton mutu tinggi.
Pozollan adalah bahan yang mempunyai kandungan utama silica dan alumina dan didapat dari sumber alam maupun buatan. Seperti dijelaskan di atas, bagian interface merupakan bagian yang terlemah dari beton. Penambahan abu terbang yang mengandung CSH maka akan memberikan beberapa keuntungan :
Mengurangi keberadaan unsure kalsium sampai dengan hidroksida didalam beton yang merupakan bagian yang lemah beton, serta menggantikannya setelah bereaksi dengan SiO2 menjadi kalsium sampai dengan silikat sampai dengan hidrat ( CSH Gel) yang selanjutnya akan memberikan penu\ingkatan kekuatan beton.
Pozollan yang berbutir halus akan mengisi pori – pori sehingga porositasnya menjadi rendah.
Pengurangan kalsium sampai dengan hidroksida oleh SiO2 akan mengurangi sensitifitas terhadap ketahanan sulfat, yang juga didukung oleh meningkatnya kerapatan beton yang pada akhirnya akan meningkatnya kekedapan terhadap air.
Pozzofume atau super fly ash dapat pula digunakan sebagai bahan tambah alternative selain abu terbang.

5. Kontrol Kualitas
Untuk dapat menghasilkan beton yang bermutu tinggi faktor control terhadap kualitas proses produksi beton pada saat pengambilan sample pengujian maupun proses penakaran sampai perawatan mutlak menjadi perhatian penting. Pengawasan dan pengendalian yang tepat dari keseluruhan prosedur dari pelaksanaan yang didukung oleh kordinasi operasional akan lebih meningkatkan kualitas mutu beton yang dihasilkan.

dari berbagai sumber

Minggu, 19 Februari 2012

Menghitung Tinkat Salinitas pada Air

Salinitas adalah kadar garam atau tingkat keasinan yang terkadung pada air, salinitas juga terdapat pada tanah. Salinitas yang terkandung pada air danau dan sungai terhitung rendah maka air pada danau dan sungai dikategorikan sebagai air tawar. Kandungan garam pada air sungai dan danau kurang dari 0,05%. Jika melebihi itu atau sekitar 0,05 % sampai 3% maka air tersebut dikategorikan sebagai air payau. Dan jika tingkat salinitasnya diantara 3% sampai 5% air tersebut dikategorikan sebagai air saline dan jika melebihi 5% maka dikategorikan sebagai brine.



Asal - Usul Terdapatnya Garam-Garaman di Laut

Menurut teori, zat-zat garam tersebut berasal dari dalam dasar laut melalui proses outgassing, yakni rembesan dari kulit bumi di dasar laut yang berbentuk gas ke permukaan dasar laut. Bersama gas-gas ini, terlarut pula hasil kikisan kerak bumi dan bersama-sama garam-garam ini merembes pula air, semua dalam perbandingan yang tetap sehingga terbentuk garam di laut. Kadar garam ini tetap tidak berubah sepanjang masa. Artinya kita tidak menjumpai bahwa air laut makin lama makin asin. Garam - garaman di laut juga berasal dari sedimen sedimen yang terbawa melalui sungai menuju laut. Faktor – faktor yang mempengaruhi salinitas :

1. Penguapan
Makin besar tingkat penguapan air laut di suatu wilayah, maka salinitasnya tinggi.
2. Curah hujan
Makin besar/banyak curah hujan di suatu wilayah laut maka salinitas air laut itu akan rendah.
3. Banyak sedikitnya sungai yang bermuara di laut tersebut
Makin banyak sungai yang bermuara ke laut tersebut maka salinitas laut tersebut akan rendah.

Penghitungan Tingkat Salinitas

Perhitungan salinitas dapat dilakukan dengan bantuan alat, seperti refraktometer dan salinometer. Berikut ini adalah beberapa cara dan langkah - langkahnya.

Refraktometer



Refraktometer merupakan alat pengukur salinitas yang cukup umum. Juga disebut sebagai pengukur indeks pembiasan pada cairan yg dapat digunakan untuk mengukur kadar garam. Prinsip alat ini adalah dengan memanfaatkan indeks bias cahaya untuk mengetahui tingkat salinitas air, karena memanfaatkan cahaya maka alat ini harus dipakai ditempat yang mendapatkan banyak cahaya atau lebih baik kalau digunakan dibawah sinar matahari jadi sehabis kita mengambil sampel air laut kita langsung menghitungnya dengan alat ini. Berikut langkah - langkahnya :

1. Tetesi refraktometer dengan aquadest
2. Bersihkan dengan kertas tisyu sisa aquadest yang tertinggal
3. Teteskan air sampel yang ingin diketahui salinitasnya
4. Lihat ditempat yang bercahaya
5. Akan tampak sebuah bidang berwarna biru dan putih
6. Garis batas antara kedua bidang itulah yang menunjukan salinitasnya
7. Bilas kaca prisma dengan aquades, usap dengan tisyu dan simpan refraktometer di tempat kering

Salinometer






Salinometer adalah alat untuk mengukur salinitas dengan cara mengukur kepadatan dari air yang akan dihitung salinitasnya. Bekerjanya berdasarkan daya hantar listrik,semakin besar salinitas semakin Besar pula daya hantar listriknya. Alat ini digunakan di laboratorium, berbeda dengan refraktometer yang biasa digunakan di lapangan atau outdoor. Cara menggunaka salinometer adalah sebagai berikut :


1. Ambil gelas ukur yang panjang, isi dengan air sampel yang akan diukur salinitasnya
2. Salinitas akan terbaca pada skalanya


semoga bermanfaat :D




Referensi :

http://dhamadharma.wordpress.com/2010/02/11/salinitas-laut/

http://roydocklas.blogspot.com/2009_04_01_archive.html

http://books.google.co.id/books?id=UkS272T7bVwC&pg=PA19&lpg=PA19&dq=cara+menggunakan+salinometer&source=bl&ots=4dYghq-_8N&sig=MXx7P-FK0LCdjwzZcxxlC8aVti0&hl=id&ei=NHWHTY6HFZHMrQeusM0s&sa=X&oi=book_result&ct=result&resnum=1&ved=0CBMQ6AEwADgK#v=onepage&q=cara%20menggunakan%20salinometer&f=false

http://www.artikata.com/arti-158779-salinometer.html

http://www.artikata.com/arti-347284-refraktometer.html


http://translate.google.co.id/translate?hl=id&sl=en&u=http://en.wikipedia.org/wiki/Salinometer&ei=7XKHTcyPIY3orQfpu4wa&sa=X&oi=translate&ct=result&resnum=1&ved=0CCIQ7gEwAA&prev=/search%3Fq%3Dsalinometer%26hl%3Did%26client%3Dfirefox-a%26rls%3Dorg.mozilla:en-US:official%26channel%3Ds%26prmd%3Divns

Self Compacting Concrete (SCC)

Dalam beberapa kasus di lapangan, seringkali pula diperlukan beton dengan mutu dan slump sangat tinggi, dua hal yang pada dasarnya saling bertolak belakang pada beton campuran normal. Beton dengan spesifikasi slump sangat tinggi (encer) lebih dikenal dengan sebutan beton dengan pemadatan mandiri (self compacting concrete – SCC) atau sering juga disebut beton alir (flowing concrete). Beton jenis ini semakin banyak dipakai karena selain dapat memiliki kekuatan yang sangat tinggi, tetapi tetap lecak dalam pelaksanaan. Sedemikian lecaknya sehingga dalam pengetesannya dikenal juga istilah slump flow test untuk mengetahui daya sebar dari campuran beton segar.

Kinerja kelecakan ini tercapai berkat bahan tambah super plasticizer yang dimasukkan ke dalam beton seperti jenis polymer. Aditif ini seolah-olah akan menyelimuti partikel-partikel semen sehingga dalam interval waktu tertentu, antar partikel semen tidak terjadi reaksi ”tarik-menarik” seperti yang terjadi dalam campuran tanpa aditif. Dalam campuran beton mutu tinggi seringkali juga digunakan bahan tambah lain dari jenis aditif mineral seperti silica fume, copper slag, dan abu terbang serta aditif-aditif lain yang lebih khusus. Aditif mineral ini umumnya mempunyai ukuran partikel yang lebih halus dari pada semen sehingga menghasilkan beton dengan kelebihan tambahan seperti lebih kedap air. Tambahan super platicizer, aditif mineral dan aditif lain ini selain membuat beton tetap lecak/encer, tetapi juga akan menghasilkan beton dengan kuat tekan tinggi bahkan berkinerja tinggi (high performance concrete).

1.1. PENGERTIAN SECARA UMUM

Self Compacting Concrete atau yang umum disingkat dengan istilah SCC adalah beton segar yang sangat plastis dan mudah mengalir karena berat sendirinya mengisi keseluruh cetakan yang dikarenakan beton tersebut memiliki sifat-sifat untuk memadatkan sendiri, tanpa adanya bantuan alat penggetar untuk pemadatan. Beton SCC yang baik harus tetap homogen, kohesif, tidak segregasi, tidak terjadi blocking, dan tidak bleeding.

Pemakaian beton SCC sebagai material repair dapat meningkatkan kualitas beton repair oleh karena dapat menghindari sebagian dari potensi kesalahan manusia akibat manual compaction. Pemadatan yang kurang sempurna pada saat proses pengecoran dapat mengakibatkan berkurangnya durabilitas beton. Sebaliknya dengan beton SCC, struktur beton repair menjadi lebih padat terutama pada daerah pembesian yang sangat rapat, dan waktu pelaksanaan pengecoran juga lebih cepat.

Beberapa syarat yang harus dipenuhi agar campuran beton bisa dikatagorikan sebagai Self Compacting Concrete (SCC) antara lain :
1. Pemilihan material yang sesuai

Table 1. Selected materials for reference concretes

2. Mix Design yang mampu memenuhi kriteria filling ability, passing ability dan ketahanan terhadap segregasi.



1.2. KELEBIHAN SELF COMPACTING CONCRETE (SCC)

Kelebihan dari SCC diantaranya :

- Sangat encer, bahkan dengan bahan aditif tertentu bisa menahan slump tinggi dalam jangka waktu lama (slump keeping admixture).

- Tidak memerlukan pemadatan manual.

- Lebih homogen dan stabil.

- Kuat tekan beton bisa dibuat untuk mutu tinggi atau sangat tinggi.

- Lebih kedap, porositas lebih kecil.

- Susut lebih rendah.

- Dalam jangka panjang struktur lebih awet (durable).

- Tampilan permukaan beton lebih baik dan halus karena agregatnya biasanya berukuran kecil sehingga nilai estetis bangunan menjadi lebih tinggi.

- Karena tidak menggunakan penggetaran manual, lebih rendah polusi suara saat pelaksanaan pengecoran.

- Tenaga kerja yang dibutuhkan juga lebih sedikit karena beton dapat mengalir dengan sendirinya sehingga dapat menghemat biaya sekitar 50 % dari upah buruh.

SCC cocok untuk struktur-struktur yang sangat sulit untuk dilakukan pemadatan manual misalnya karena tulangan yang sangat rapat ataupun karena bentuk bekisting tidak memungkinkan, sehingga dikhawatirkan akan terjadi keropos apabila dipadatkan secara manual. Selain itu bisa juga diaplikasikan untuk lantai, dinding, tunel, beton precast dan lain-lain.

Di Indonesia sendiri, saat ini relatif tidak menemukan kesulitan untuk membuat SCC, namun untuk beton dengan tujuan pencapaian kekuatan awal tinggi, SCC masih memerlukan bahan tambahan lain sehingga menghasilkan SCC dengan kekuatan awal tinggi yang biasa disebut High Early Strength Self Compacting Concrete (HESSCC). Penggunaan Silica Fume sebesar 2 % dan Glenium Ace-80 sebesar 2.5 % sudah mampu mencapai kriteria self compactible sekaligus kuat tekan awal (High Early Strength) yang baik pula, karena nilai water-binder ratio tetap dijaga pada nilai yang rendah.

Untuk mendapatkan campuran beton SCC dengan tingkat workability yang tinggi perlu juga diperhatikan hal-hal sebagai berikut :

Aggregat kasar dibatasi jumlahnya sampai kurang lebih 50% dari volume padatnya.
Pembatasan jumlah aggregat halus kurang lebih 40% dari volume mortar.
Water Binder Ratio dijaga pada level kurang lebih 0.3

Saat ini terdapat beberapa produsen yang menyediakan aditif super plasticizer dan aditif lain untuk keperluan SCC. Aditif mineral tertentu juga relatif mudah didapat dengan harga yang ekonomis. Meskipun demikian, pemahaman memadai mengenai material, perilaku dan metode pelaksanaannya tetap harus diperhatikan sebelum menggunakan SCC.

Beberapa pakar meramalkan SCC akan merupakan salah satu beton masa depan karena keunggulannya, tentunya dengan kinerja yang lebih baik lagi.



KARAKTERISTIK DAN METODE TEST SELF COMPACTING CONCRETE

2.1. WORKABILITY

Berdasarkan spesifikasi SCC dari EFNARC, workabilitas atau kelecakan campuran beton segar dapat dikatakan sebagai beton SCC apabila memenuhi kriteria sebagai berikut yaitu:

§ Filling ability

§ Passing ability

§ Segregation resistance

Filling ability, adalah kemampuan beton SCC untuk mengalir dan mengisi keseluruh bagian cetakan melalui berat sendirinya.

Passing ability, adalah kemampuan beton SCC untuk mengalir melalui celah-celah antar besi tulangan atau bagian celah yang sempit dari cetakan tanpa terjadi adanya segregasi atau blocking.

Segregation resistance, adalah kemampuan beton SCC untuk menjaga tetap dalam keadaan komposisi yang homogen selama waktu transportasi sampai pada saat pengecoran.

2.2. METODE TEST

Metoda test pengukuran workability telah dikembangkan untuk menentukan karakteristik beton SCC dan sampai saat ini belum ada satu jenis metoda test yang bisa mewakili ketiga syarat karakteristik beton SCC seperti tersebut di atas. Dari beberapa metoda test yang telah dikembangkan akan dibahas hanya tiga macam metoda yang dianggap dapat mewakili ketiga kriteria workability tersebut di atas.

2.2.1. SLUMP-FLOW

Slump-flow test dapat dipakai untuk menentukan ‘filling ability’ baik di laboratorium maupun di lapangan; dan dengan memakai alat ini dapat diperoleh kondisi workabilitas beton berdasarkan kemampuan penyebaran beton segar yang dinyatakan dengan besaran diameter yaitu antara 60 cm – 75 cm.

Kebutuhan nilai slump flow untuk pengecoran konstruksi bidang vertikal berbeda dengan bidang horisontal. Kriteria yang umum dipakai untuk penentuan awal workabilitas beton SCC berdasarkan tipe konstruksi adalah sebagai berikut :

Untuk konstruksi vertikal, disarankan menggunakan slump-flow antara 65 cm sampai 70 cm.
Untuk konstruksi horisontal disarankan menggunakan slump-flow antara 60 cm sampai 65 cm.

2.2.2. L-SHAPE-BOX

Dipakai untuk mengetahui kriteria ‘passing ability’ dari beton SCC. Dengan menggunakan L-Shape Box, dapat diketahui kemungkinan adanya blocking beton segar saat mengalir, dan juga dapat dilihat viskositas beton segar yang bersangkutan. Selanjutnya dengan L-Shape-Box test akan didapat nilai blocking ratio yaitu nilai yang didapat dari perbandingan antara H2 / H1. Semakin besar nilai blocking ratio, semakin baik beton segar mengalir dengan viskositas tertentu. Untuk test ini kriteria yang umum dipakai baik untuk tipe konstruksi vertikal maupun

untuk konstruksi horisontal disarankan mencapai nilai blocking ratio antara 0.8 sampai 1.0

2.2.3. V - FUNNEL

Dipakai untuk mengukur viskositas beton SCC dan sekaligus mengetahui ‘segregation resistance’ . Kemampuan beton segar untuk segera mengalir melalui mulut di ujung bawah alat ukur V-funnel diukur dengan besaran waktu antara 6 detik sampai maksimal 12 detik.

2.3 POURING DAN FORMWORK

Beberapa hal yang perlu diperhatikan sebelum pengecoran dengan beton SCC adalah sebagai berikut:

§ Durasi waktu pengecoran disesuaikan dengan waktu ikat awal beton untuk menghindari terjadinya cold joint.

§ Cara terbaik untuk pengecoran beton SCC adalah dari bawah cetakan/formwork untuk menghindari udara terjebak (dengan eksternal hose adalah sangat efektif).

§ Beton SCC dapat mengalir sampai jarak 10 meter tanpa hambatan.

§ Elemen tipis 5 – 7 cm dapat diisi oleh beton SCC tanpa hambatan.

§ Tidak memerlukan keahlian yang spesifik saat pelaksanaan pengecoran.

KESIMPULAN DAN SARAN

3.1. KESIMPULAN

Self Compacting Concrete atau yang umum disingkat dengan istilah SCC adalah campuran beton segar yang sangat plastis yang mampu mengalir karena berat sendirinya, mengisi ke seluruh cetakan walaupun pada tulangan yang sangat rapat, memiliki sifat-sifat untuk memadatkan sendiri tanpa adanya bantuan alat penggetar untuk pemadatan.

Beton SCC yang baik harus tetap homogen, kohesif, tidak segregasi, tidak terjadi blocking, dan tidak bleeding.

3.2. SARAN

Agar campuran beton dapat dikatagorikan sebagai Self Compacting Concrete perlu diperhatikan pemilihan material yang sesuai yang disyaratkan dan Water Binder Ratio dijaga pada level kurang lebih 0.3 serta mix design yang mampu memenuhi kriteria filling ability, passing ability dan ketahanan terhadap segregasi.

sumber: http://www.infobangunan.com

Minggu, 12 Februari 2012

Bendable Concrete




sumer gambar: National Geographic


Siapa bilang beton Semua pada tegangan? Tebak dosen konstruksi Anda salah setelah semua. Sebuah jenis baru dari diperkuat serat beton ditekuk telah dikembangkan di University of Michigan. Beton baru adalah 500 kali lebih tahan terhadap retak dan 40 persen lebih ringan dalam berat. Bahan dalam beton itu sendiri dirancang untuk fleksibilitas maksimum. Para Semen Komposit teknologi Direkayasa telah digunakan sudah pada proyek-proyek di Jepang, Korea, Swiss dan Australia, tetapi telah adopsi lambat di AS, kata profesor teknik Victor Li. Beton tradisional menyajikan banyak masalah: kurangnya daya tahan dan keberlanjutan, pembebanan parah, dan biaya yang dihasilkan dari perbaikan. ECC harus mengatasi sebagian besar masalah tersebut. Beton, ulet, atau ditekuk dibuat terutama dari bahan yang sama dalam beton biasa minus agregat kasar. Tampaknya persis seperti beton biasa, tapi di bawah tekanan yang berlebihan, beton ECC memberi karena jaringan urat serat semen diperbolehkan untuk slide dalam semen, sehingga menghindari kekakuan yang menyebabkan kerapuhan dan kerusakan.

Pertama, mereka memiliki beton ditekuk, maka insinyur memperkenalkan beton transmisi cahaya untuk dunia, sekarang kami memiliki beton yang dapat menyembuhankan diri setelah ditekuk.

Sebuah tim yang dipimpin oleh Victor Li dari Universitas Michigan di Ann Arbor telah mengembangkan jenis baru dari beton yang melengkung di bawah tekanan dan bagian terbaiknya adalah, dapat memperbaiki dirinya sendiri! Beton penyembuhan diri mengembangkan patah tulang rambut banyak ketika membungkuk, mendistribusikan tekanan di atas wilayahnya. Celah-celah kecil akan menutup diri dengan kalsium karbonat bila terkena air hujan dan karbon dioksida.

Sebuah lempengan menyembuhkan diri sendiri setelah lengkungan beton di bawah 5 persen regangan tarik, gaya yang dibutuhkan untuk meregangkan material sebesar 5 persen dari ukuran awalnya. Sementara beton biasa akan hancur di bawah tekanan tersebut, materi baru membentuk mikro-retak yang kemudian dapat auto-segel setelah terkena air dan karbon dioksida, kata peneliti pada Maret 2009. sumber

Sebuah bangunan yang lebih aman selama gempa bumi.